
Script Tutorial

Dice!
Plus

Copyright © 1995 Armin D. Sykes. All Rights Reserved.

Script Tutorial Dice! Plus

page 2

Contents

Getting Started With Scripts .. 3
The Simplest Useful Script ... 3
Power Through Little Boxes? ... 4
Garbage Chutes... 6
Garbage On Display ... 7
If We Only Had A Brain... 8
Improving The Brain .. 12
The Case For Real Power ... 15
Jumping About, And Using Line Labels 16
Readable Script Code (A Small Digression) 17
Looping A Certain Number Of Times .. 19
Getting Input ... 23
Ready To Rip .. 24
That Is All ... 30

Index ... 32

Miscellaneous Information ... 33
Where To Reach Me ... 33

Dice! Plus Script Tutorial

page 3

Getting Started With Scripts
Scripts are, in their simplest form, just lists of commands that tell

Dice! Plus what to do. Since you already know how to write down a die
roll, you are half way to the simplest form of a script.

This short tutorial will give you an introduction to the possibilities
available with the Dice! Plus script language.

In this manual, I use several particular fonts and text styles to
emphasize certain points. Generally, a monospaced font is used in the
example scripts, so it would look like this:

RESULT = “sample script”

Within the sample script text, a word that is in all capital letters,
such as the word RESULT above, means that the word is a command or
key word in the script language.

The Simplest Useful Script

If your game book refers to 3d6, you know that it means roll three
six-sided dice and add them together, using the result of that addition for
the task you are trying to accomplish. Using a simple script is the same
thing, except that you have to tell Dice! Plus (DP) what to do with the
3d6 that it will be rolling. Here is the simplest possible script, that
actually does something useful:

RESULT = 3d6

This script does just what you would do: it rolls three six-sided dice,
adds them together, and shows you the result so that you can do some-
thing with it.

Let’s take a closer look at the structure of this one line of script,
since it is the basic structure that will be used to do most of the work in
the DP script language.

We have three pieces in this script, the ‘RESULT’ piece, the ‘=’
piece, and the ‘3d6’ piece. The ‘3d6’ piece just tells DP to roll 3d6. The
‘=’ piece tells DP that you want to take the piece to the right of it, and

Script Tutorial Dice! Plus

page 4

stuff it into the piece on the left of it, which is the ‘result’ piece. The
‘RESULT’ piece tells DP that you want to see the result in the Result
box of Dice! Plus.

In other words, our tiny, one line script just tells Dice! Plus to roll
3d6 and show you the result. Couldn’t you just enter 3d6 into the Die
Value / Script box and accomplish the same thing? Yes, you could, but
the power of scripting is that you can get much more complicated than
the tiny script we are starting with. The Die Value / Script box can only
hold one line to roll, but a script can be as long as you need to get the
result that you want.

Power Through Little Boxes?

Yup, we’re going to get extra power for our scripts by using little
boxes to hold things until we need them. They aren’t really little boxes,
but they work pretty much the same way as boxes do; that is, they hold
things until you need them, and you can write names on them so that you
remember what’s supposed to be inside.

The little boxes I’m talking about are called variables. A variable is
just a fancy word for a feature that works like a box: it holds something,
but what it holds can change if you put something else into it.

In Dice! Plus, you can use variables to hold any numbers that you
want, even the results of a die roll or a function. However, before you
can use a variable, you have to tell DP that you need one, and what it is
going to be called. This is just like making a box and writing on it what’s
inside before you start packing it full of stuff. Here is how you make
your handy box in DP:

VAR .variable.

So what does this line mean? The ‘VAR’ piece of the line tells DP
that you want to make a variable, and the ‘.variable.’ piece of the line
tells DP what the name of the variable is going to be. Just like your box,
you make it and you name it.

NOTE: Variables can have any name that you want to give them, but
it is usually best to begin and end all of your variable names with a
common character, such as the periods beginning and ending the name
‘.variable.’ in the example above. Why should you do that? Because if

Dice! Plus Script Tutorial

page 5

you don’t, DP can sometimes become confused when one variable name
includes the name of another variable, such as a variable name of
‘dieroll’ including the variable name of ‘die’. It takes very little effort to
enclose all of your variable names in periods or parenthesis, so you
should try to do that to protect your variables. Think of it as bubble wrap
or foam peanuts inside your boxes to protect the valuable items you have
placed inside.

Now that we know how to make our boxes and name them, how do
we cram our variables full of neat stuff? Well, believe it or not, you
already know how to do it, because our very first sample script showed
us the way.

To refresh our memories, here is our original sample script:

RESULT = 3d6

Remember that the ‘=’ piece of the script line tells DP to cram
what’s on the right side into what’s on the left side. In this sample, we
saw that cramming ‘3d6’ into RESULT meant that the result of rolling
3d6 was shown in the Result box. Well, what if we had a handy little
variable sitting on the left side instead of the ‘RESULT’ piece? Wouldn’t
it get filled up with the result of the ‘3d6’ piece instead? It sure would.

Let’s take a look at a sample script that combines our two previous
examples, with the minor change of using our variable to hold our 3d6
result:

VAR .variable.
.variable. = 3d6
RESULT = .variable.

Well, our script has gotten longer, even if it still doesn’t do much.
We know that the first line makes our variable, and names it. Our second
line rolls 3d6 and puts the result into our variable for safe keeping. Our
third line we haven’t seen before, but it isn’t doing anything new; it just
takes what we have stored away in our little box and displays it in the
Result box.

It is important to remember that when you use a variable in a script,
DP is really looking into your little box and using what it sees inside.
This means that in our sample script above, when DP rolls the 3d6, it
gets some result, let’s say 11 for now, and stores that number in the

Script Tutorial Dice! Plus

page 6

variable. Now, our variable is holding the number 11, ready for us to use
it somewhere else. Then, in the last line of the script, when we tell DP to
take the variable and display the result in the Result box, DP looks into
our variable, sees the 11 sitting there, and hands it over. Don’t worry
about RESULT taking away the 11 from ‘.variable.’ though, because it is
still inside. Our boxes are a little magical, so they can give out what they
are holding every time you want one. No matter how often you get a
number from a variable, it always has that number to give out again. The
only time our boxes will lose what they are holding inside is if you tell
them to hold something else instead.

Garbage Chutes

By now, you have probably figured out that the ‘RESULT’ piece we
used in our sample scripts is a kind of variable. You’re right, it is.
RESULT is a special kind of variable, called a result variable, that tells
DP that you want to display what it is holding in the Result box. How-
ever, RESULT isn’t a very good box, because you can’t take out what
you put into it, you can only put more stuff in. RESULT is actually more
like a garbage chute: you can dump stuff in, but you can’t get it out
again.

We also have a second garbage chute in the DP script language, that
works a lot like RESULT does. In fact, this result variable is a big
brother to RESULT called WINRESULT. What WINRESULT does is
the same as RESULT with one additional feature: it causes a little
message box to pop up on the screen containing what you dumped down
the WINRESULT chute.

Our two result variables do have one other feature that makes them
better than our regular variables, though. You can shove text instead of
just numbers into them. This means that you could have a script that
gives you a short message instead of just showing you a number. That
could be pretty handy, don’t you think?

To make RESULT or WINRESULT display a short message instead
of a number, just put the text inside of quotes after the ‘=’ piece of the
script line. For example:

WINRESULT = “This is a short message”

Dice! Plus Script Tutorial

page 7

will cause a message window to pop up on screen, displaying the
message “This is a short message” to the user.

There are a couple of other things you need to know about our
special garbage chute variables. The first is that only the last one you
used will cause anything to happen. In other words, if you used this
script:

WINRESULT = “This is a short message”
RESULT = 5

the only thing that will happen is that a ‘5’ will appear in the Result
box. The message window will not appear because only the last result
variable that got stuff dumped into it will cause anything to happen.

The second thing you need to know is that they don’t actually cause
anything to happen at all. Anything you dump into one of the chutes just
sits there until the script ends. Once the script ends, and something was
dumped into a chute, the proper action occurs, depending on which chute
was used last.

Garbage On Display

The fact that you only see what was dumped into a result variable
when the script ends wouldn’t be that big a deal in a simple script, but in
the more complicated scripts we’ll get to later, that could be a big
problem, because a script doesn’t have to end! So we have a special
script command that tells Dice! Plus that it should show the world what
you dumped down the garbage chute. That command is DISPLAY.

DISPLAY sits by itself in a script line, because it doesn’t do any-
thing to anything else. DISPLAY just tells DP that it needs to show you
the results you have stuffed into your result variable of choice. For
example, if we use the sample script from a few paragraphs back, and
add a DISPLAY to it, we can see the message that we wanted to display
in the WINRESULT window. For example:

WINRESULT = “This is a short message”
DISPLAY
RESULT = 5

Script Tutorial Dice! Plus

page 8

would result in a window popping up on screen containing the
message “This is a short message” and waiting for you to click Okay to
make it go away. Then, the Result box would get updated with the
number 5 because you dropped that into the RESULT chute just before
the script ends.

Now, if the RESULT and WINRESULT lines in the example script
above were switched, you would never get to see the ‘5’ in the Result
box, because it would be instantly replaced with the message from the
WINRESULT result variable. This is because the window that pops up
to show you what is in WINRESULT will wait for you to make it go
away, allowing you to see the result. On the other hand, RESULT just
updates the Result box, which happens instantly, and is quickly replaced
by the value that would be displayed by WINRESULT when the script
ends.

If We Only Had A Brain

So far, what we have learned to do is pretty straight-forward stuff,
that doesn’t necessarily add much to the power of Dice! Plus. That’s
about to change, though, because DP does indeed have a brain.

To make scripts that are capable of doing neat things, you need to
have the ability to make decisions. How can you make decisions, if you
can’t ask any questions? You can’t. Dice! Plus allows you to ask ques-
tions and make decisions through the use of the IF..ENDIF block.
Basically, this allows you to ask DP true or false questions.

The first part of the IF..ENDIF block is a line starting with the word
‘IF’, which tells DP to look at the rest of the line and answer the ques-
tion. The question has to be one that DP can answer as True or False, so
that you and DP will know what to do next. Normally, these questions
are ones that compare one number or variable to another, such as:

• using the ‘=’ sign to compare if the two items are equal to each
other, and if they are, DP answers True, otherwise it answers
False.

• using the ‘<‘ sign to compare if the item on the left is less than
the item on the right, and if it is, DP answers True, otherwise it
answers False.

• using the ‘>’ sign to compare if the item on the left is greater

Dice! Plus Script Tutorial

page 9

than the item on the right, and if it is, DP answers True, other-
wise it answers False.

• using the ‘<=’ sign to compare if the item on the left is less than
or equal to the item on the right, and if it is, DP answers True,
otherwise it answers False.

• using the ‘>=’ sign to compare if the item on the left is greater
than or equal to the item on the right, and if it is, DP answers
True, otherwise it answers False.

• using the ‘<>’ sign to compare if the items are not equal to each
other, and if they aren’t, DP answers True, otherwise it answers
False.

Then, if the answer to the question was True, Dice! Plus does all the
lines of the script contained in the IF..ENDIF statement block, otherwise
it jumps to the end of the block, where the ENDIF line is, and continues
the script from there.

So what is an IF..ENDIF statement block? Well, the structure of the
IF..ENDIF block is such that the IF part (including the question part) is
on a line by itself, and the ENDIF part is on a line by itself as well, like
this:

IF <question part>
<statement block>

ENDIF

So, the IF..ENDIF block is made up of every line starting with the IF
part and ending with the ENDIF part. All of the lines that are between
the IF part and the ENDIF part make up the statement block. These lines
are only looked at if the answer to the question part of the IF statement is
True.

So, if the question part of the IF statement is True, the lines between
the IF part and the ENDIF part are used; otherwise Dice! Plus just jumps
down to the ENDIF part, and continues on from that point in the script.
This is why the IF..ENDIF statement is written with those two little dots
between the two parts: to remind you that it is a block with statements
between the two parts of the command.

Let’s take a look at what an IF..ENDIF block would look like in a
short sample script:

Script Tutorial Dice! Plus

page 10

VAR .variable.
.variable. = 3d6
IF .variable. < 6

RESULT = “The result is under 6”
END

ENDIF
RESULT = “The result is 6 or more”

As you can see, we now have a script that is capable of doing
something more complicated than we could get just typing things into
the Die Value / Script box. This script can make a decision and give us a
different result based on that decision.

So what is going on in this script? Well, the first two lines you know
from our samples earlier.

The third line is the one we are really interested in, because it is the
start of our IF..ENDIF block. This line looks inside the .variable. and
sees if the number inside is less than the number 6. If the value of
.variable. is less than six, the answer to the comparison question is True,
so the lines in the statement block are executed. If the answer to the
comparison question is False, the script would continue after the ENDIF
part of the IF..ENDIF block.

So, lets pretend that we run this script, and Dice! Plus rolls the ‘3d6’
part to get a result of 12. Now the 12 is stuck into the variable named
.variable., and DP reaches the IF statement. DP looks at the comparison
question of “12 is less than 6” and answers False, just like you or I
would. Now, because the answer was false, DP skips all the lines until it
reaches the ENDIF part, where it once again pays attention to the script
lines. Now, it sees the line telling it to dump “The result is 6 or more”
into the Result box, so it does it, and then the script ends.

Now, lets pretend that we run this script again, and this time DP rolls
the ‘3d6’ part to get a result of 5. Now the 5 goes into the variable, and
the comparison question for the IF statement of “5 is less than 6” is
answered True. Because the answer was True, DP looks at the next lines
of the script, inside the statement block, which it skipped last time. This
time, it sees the line telling it to dump “The result is under 6” into the
Result box.

Then, it does the next line, which is just ‘END’. What does this line
mean? Well, this line tells Dice! Plus to stop the script right on that line.
Doing this will cause the Result box to be updated, because the script is

Dice! Plus Script Tutorial

page 11

over, and it will prevent DP from continuing the script beyond that point.
Stopping this script inside the statement block is important, because

otherwise DP would finish the script lines inside the statement block,
and then continue on with the lines outside the statement block, which
we don’t want to happen because that would give us an incorrect result.
It is very important that the IF..ENDIF block only tells DP to execute the
lines inside the block if the answer to the question is True, it does not tell
DP anything about any other part of the script. This means that any lines
that aren’t inside a statement block will be executed by Dice! Plus.

I can’t stress this hard enough: any lines that you only want Dice!
Plus to run when a certain condition is True must be inside a state-
ment block! Otherwise, DP does not realize what you are trying to do,
and happily runs through the lines. Also, any lines inside a False state-
ment block are invisible as far as DP is concerned, so even if you have
an END command inside a statement block, DP will ignore it unless the
statement block is currently True.

It is possible to nest one or more IF..ENDIF blocks inside of another,
and this can be a very useful tool. For example:

VAR .variable.
VAR .random.
.variable. = 3d6
IF .variable. < 11

.random. = 1d10
RESULT = “You get an empty box”
IF .random. < 8

RESULT = “You get a strange potion”
ENDIF
IF .random. < 5

RESULT = “You get a +1 magic sword”
ENDIF
IF .random. = 1

RESULT = “You get a +2 magic sword”
ENDIF
END

ENDIF
RESULT = “Your task failed”

This is a somewhat more complicated script, but only because there
is more to it. Everything in this script, you already know how to do; the
only difference is that you have some IF..ENDIF blocks nested inside of

Script Tutorial Dice! Plus

page 12

another one.
In this script, if variable is 10 or less, the lines inside of the first

block will be executed, otherwise only the last line will generate a result.
Also, notice how the IF..ENDIF blocks inside the first block are

arranged. They are arranged from larger result to smaller result. Why?
Because this will help to make sure that only the correct result ends up in
our Result box. Let’s say .random. held a value of 4. The first line after
assigning the 4 to the .random. variable is a simple assignment to the
Result result variable. Next, we see that 4 is less than 8, so we get a new
assignment to the Result box. Then, we see that 4 is less than 5, so we
get yet another Result assignment. The last IF is false, so that one is
skipped. Then, the ‘end’ terminates the script, and we are left with the
result that we wanted, which came from the ‘if .random. < 5’ line.

Now, if those IF..ENDIF blocks had been in reverse order, with the
smaller item comparisons at the top, what would have happened? Well,
any result less than 8 would have been assigned the “You get a strange
potion” result when we clearly wanted the lower numbers to get different
results! This is not our intention, so we arranged the items from larger to
smaller.

Please note: The arrangement from larger to smaller is necessary
because this script was designed to ‘fall through’ all applicable items.
This is because we may want to use lines lower down, such as the ‘end’
line, to apply to all previous lines. If you don’t do this, and you would
rather have each separate block use it’s own END command, then you
should be sure to pay attention to the logic of the script flow. In this
case, if each block had its own END, then the order of IF questions
should be from the lowest to the highest, just the reverse of what it is
now.

Improving The Brain

Now that we have seen how we can use IF..ENDIF blocks to make
decisions, we have another powerful tool for making our decisions a
little easier to understand: the SELECT CASE block. The SELECT
CASE block is similar to a bunch of IF..ENDIF blocks that all make
comparisons with the same value, except that it is structured a little bit
differently and allows us to use a somewhat easier to read and under-

Dice! Plus Script Tutorial

page 13

stand structure. Let’s take a look at the sample script we used in the
IF..ENDIF example above, except we’ll rewrite it to use a SELECT
CASE block instead. Here it is:

VAR .variable.
.variable. = 3d6
IF .variable. < 11

SELECT CASE 1d10
CASE ELSE

RESULT = “You get an empty box”
CASE IS < 8

RESULT = “You get a strange potion”
CASE IS < 5

RESULT = “You get a +1 magic sword”
CASE 1

RESULT = “You get a +2 magic sword”
END SELECT
END

ENDIF
RESULT = “Your task failed”

The first thing you should notice is that we no longer have the ‘VAR
.random.’ line, and we don’t use the variable .random. anywhere in our
script. Before, we needed something to hold the result of our 1d10 roll so
we could make sure that all our IF statements were looking at the same
number. Using SELECT CASE, all of our comparisons are made to the
number used in the SELECT CASE line.

So, what is going on in our new script. First, the ‘SELECT CASE
1d10’ line rolls a 1d10, and remembers the result so that it can be used in
each of the following comparisons. Then, we have a bunch of CASE
<something> lines, followed by an END SELECT line. The END
SELECT line just tells DP that the SELECT CASE block is over, so it
can go back to running the script without looking for CASE lines.

In between the SELECT CASE lines and the END SELECT lines is
where all the work is being done, and it’s the CASE lines that are doing
the decision making.

Let’s start at the bottom, with the ‘CASE 1’ line. What this line does
is look at the number stored away in the SELECT CASE line, which in
this case is the result of a 1d10 die roll, and see if it is equal to 1. That’s
it. CASE followed by a single number just means “see if the number
we’re comparing is equal to the number on this line.” If it is, then DP

Script Tutorial Dice! Plus

page 14

will execute the lines in the block after the CASE line, until it reaches
either another CASE line, or the END SELECT line. If the number we’re
comparing isn’t equal to the number on the CASE line, then DP will skip
all the lines it sees until it reaches another CASE line, or the END
SELECT line. Basically, this line is similar to an IF..ENDIF block that
looks like this:

IF 1d10 = 1
RESULT = “You get a +2 magic sword”

ENDIF

The big difference is that the 1d10 was already rolled, and you don’t
have to waste time with a whole bunch of IFs and ENDIFs, because a
CASE takes care of it for you.

Now, by looking at the middle two CASE blocks in our SELECT
CASE block, we can see that we are making comparisons using the ‘<‘
sign. If you want to make a comparison that isn’t a simple ‘is it equal or
not’, then you have to use the word IS between the CASE and the
comparison you want to make. Using CASE IS allows you to use all the
same comparisons that you can use with an IF statement, except that the
left side of the comparison (where the CASE IS part is located on the
line) will be taken up by the comparison value. So, our CASE block of:

CASE IS < 8
RESULT = “You get a strange potion”

is about equivalent to the IF block of:

IF 1d10 < 8
RESULT = “You get a strange potion”

ENDIF

By now, you can probably see that a few CASE statements and their
surrounding SELECT CASE and END SELECT statements make scripts
a little easier to write, and with a little practice, a lot easier to understand
as well.

The top CASE statement is a little bit different from the others,
because it has the word ‘else’ there instead of a number. What does this
mean? A CASE ELSE block in a SELECT CASE block allows you to

Dice! Plus Script Tutorial

page 15

have a CASE block inside the SELECT CASE block that will always be
run. This allows you to have a default result, in case one of the compari-
sons below it does not satisfy the value that you are comparing. For
example, if the 1d10 roll of the script resulted in an 8, 9, or 10, none of
the other CASE lines would apply, so the result made in the CASE ELSE
block would be used.

As with the IF..ENDIF blocks that we used above, the CASE blocks
are arranged from larger result to smaller result, and for the same reason.
The CASE statements will always be evaluated so long as they are True,
so you want the ones that have smaller chances to be done last. Note that
the CASE ELSE block is at the top; this is because the CASE ELSE is
always True, and therefore would replace the results of any previous
block if it was at the bottom of the block of CASE blocks.

The Case For Real Power

We have just seen the usefulness of the SELECT CASE statement
block, because it can make scripts easier to read and understand, and
requires less work to use for many comparisons. However, the real
power of the SELECT CASE statement is the way it makes so many
different comparisons so much easier to use than a bunch of IF..ENDIF
blocks.

What if we wanted to change our sample script a little bit, so that we
could use a small bell curve to see what we get in the middle section?
Let’s change it to use 3d6 instead of a d10, and have the cool stuff
appear on both ends of the scale. Our new script might look like this:

VAR .variable.
.variable. = 3d6
IF .variable. < 11

SELECT CASE 3d6
CASE ELSE

RESULT = “You get an empty box”
CASE 3, 18

RESULT = “You get a +2 magic sword”
CASE 4, 5, 16, 17

RESULT = “You get a +1 magic sword”
CASE 6 TO 8, 13 TO 15

RESULT = “You get a strange potion”
END SELECT

Script Tutorial Dice! Plus

page 16

END
ENDIF
RESULT = “Your task failed”

As before, we have the CASE ELSE statement block to cover any
results that we don’t explicitly check against.

With this new script, however, we are learning two new things that
we can do in the SELECT CASE statement, with the CASE statements.
First, we can combine several CASE statements into a single one, so
long as each value is separated by a comma. We can not combine a
CASE IS statement, however, so if we used any CASE IS statements, the
would still have to be done individually. Second, we can check to see if
our comparison value is within a range by using a TO between the two
ends of the range to compare with. Using TO eliminates the need to list a
bunch of individual numbers that simple proceed in order from one end
of the range to the other.

Trying to compare a value to several other values all at one time
using an IF..ENDIF block would be a major pain, at the least, so the
SELECT CASE block grants us a significant bit of power.

Jumping About, And Using Line Labels

Sometimes, you may have some code that you want to go to a bunch
of times. So far, you don’t really know how to do that. Well, DP has a
script command for that, as well: GOTO. GOTO tells DP that you want
to go to someplace else. With the GOTO command, however, you have
to be able to tell DP where it is you want to go, so DP also allows line
labels. Line labels are kind of like addresses for a GOTO command, but
you can use them even if you don’t use any GOTOs.

A line label is on a line all by itself, and it starts with the colon ‘:’
character. Normally, a line label is ignored by Dice! Plus when it is
running a script, so you can label anywhere you want, if you want to.
The only time DP cares about your line labels is when it gets an address
for a GOTO command, then it jumps to the line containing the line label
that matches the address (ignoring the colon that designates the line
label), and continues the execution of the script from that point.

Here is a simple script that makes use of a GOTO and a line label to
do some constructive work:

Dice! Plus Script Tutorial

page 17

VAR .total.
VAR .roll.
.total. = 0
:loop

.roll. = 1d6

.total. = .total. + .roll.
IF .roll. < 6

RESULT = .total.
END

ENDIF
GOTO loop

What this script does is pretty simple, but we couldn’t do it without
our line label and GOTO command: it rolls 1d6, adding the result to the
total each time it rolls; if the roll is less than 6, the total is displayed and
the script ends, otherwise the script jumps back to the ‘:loop’ line label
and rolls another 1d6, which is added to the total.

Please note that the ‘:’ which starts the line label of ‘:loop’ is not
part of the name of the label, it just tells DP that it is a line label. This is
why you don’t use the colon as part of the goto address in the GOTO
command.

What this sample script is doing is very much like what you would
do if you were rolling a d6 for one of the many game systems that use a
wild die. Every time you get a six, you roll again and add the result to
your total, until you no longer roll a six.

Readable Script Code (A Small Digression)

Look at the way the sample script used in the previous section is set
up, with a check for a non-six result to end the script, instead of a check
for a six to do the GOTO command. This setup allows the whole looping
chunk of code to have a clearly defined beginning, the ‘:loop’ line, and
ending, the ‘goto loop’ line. Now, when the code between the beginning
and ending lines of the loop are indented, it is easy to see that all of the
indented code is of the same section of the script, the same level of
importance.

By using indentation every time I enter a different block of code,
such as that used in all the sample IF..ENDIF blocks, I can make it easier

Script Tutorial Dice! Plus

page 18

to see what each piece of my code is up to, because I can clearly see
where each chunk of the script code begins and ends. This also allows
me to see at a glance which chunks of code are dependent on, or subsec-
tions of, other parts of code.

You can also use blank lines to separate the different chunks of your
code, as these will be obvious to you, but ignored by the program.

Indentation and blank lines, however, are note the only ways to
improve the readability and understandability of your script code.
Another way is using comments to explain what the pieces of your script
are supposed to be doing.

Comments in the Dice! Plus script language are marked by the semi-
colon character ‘;’. Everything on a line that follows a semi-colon is
ignored by DP; its sole purpose is to allow you to embed comments into
your scripts without confusing Dice! Plus.

The sample script of the last section, with comments and a blank line
or two added, might look something like this:

;define all our needed variables
VAR .total.
VAR .roll.

;start the executable section of code
.total. = 0
:loop ;top of the loop

.roll. = 1d6

.total. = .total. + .roll.
IF .roll. < 6

;if the roll wasn’t a six, display
;the total and end
RESULT = .total.
END

ENDIF
GOTO loop ;bottom of the loop

While these additional comments may not be that important for such
a small script as this one, more complicated scripts will greatly benefit
from the additional help that a few well placed comments will confer.

Remember, anything following a semi-colon on the same line is
treated as a comment, so while you can put comments after commands
on the same line, you can not put commands after a comment on the
same line, because they will be ignored.

Dice! Plus Script Tutorial

page 19

Looping A Certain Number Of Times

Now that we know how to use a simple loop, what do we do if we
want to run a loop a specific number of times, and then stop? Well, using
what we already know, we can make a simple script, like this one, that
rolls a die six times, showing the result each time:

VAR .counter.
.counter. = 0
:loop

.counter = .counter. + 1
IF .counter. > 6

GOTO afterloop
ENDIF
WINRESULT = 1d6
DISPLAY

GOTO loop
:afterloop
RESULT = .counter.

This script simply keeps a counter that adds one to itself every time
the loop starts over, and when it reaches 7, instead of rolling the 1d6 and
displaying the result, it jumps out of the loop and displays the value of
‘.counter.’ so you know it’s done.

This sample script really isn’t that useful, of course, but it is a handy
way to see what extra steps are necessary to do a limited run loop such as
this one. From looking at the sample script, we can see that doing a
limited run loop such as this one requires at least 7 lines of code (two
line labels, two GOTO commands, the IF..ENDIF lines, and the line that
increases the counter variable). If we use very many loops of this kind,
that’s a lot of extra lines to put into a script. There must be a better way,
and there is: the FOR..NEXT loop.

The FOR..NEXT loop is, as you can see from the pair of little dots in
the name, another block structure, which means that the FOR line is a the
top, the NEXT line is at the bottom, and the statement block will fall into
the middle.

What a FOR..NEXT loop does is take away the code that you need
to write to tell the script where the loop begins and ends, what to add to
your counter variable each time through, and when to stop the loop and
continue on with the rest of the script. The way it does this is very

Script Tutorial Dice! Plus

page 20

simple:

FOR <counter> = <startval> TO <endval> STEP <stepval>
<statement block>

NEXT

The NEXT part of the block just sits there by itself, telling the script
that when it reaches this line, it should jump back up to the FOR line.
This means that you don’t have to include any other lines, or a line label,
to get the loop to work.

The <statement block> part, of course, is where you put the code
that you want to be executed each time the loop runs. From the example
above, this would be nothing more than this pair of lines:

WINRESULT = 1d6
DISPLAY

since, these lines were all that was done inside the loop that wasn’t
for the purpose of keeping track of the loop itself.

The FOR line is the complicated part of the FOR..NEXT loop block.
The <counter> part of the line is where you would put the counter
variable for your loop, this was ‘.counter.’ in the example above. The
equals sign in this line tells DP that each piece of the rest of the line will
get put into the <counter> part at some point. The <startval> part will be
the value that you want the <counter> part to have the first time the loop
starts, which would be 1 from our example above. The <endval> part
should be the value that you want DP to look at, to see if the loop is
finished yet. The <endval> part should be the value that you want to end
the script after, so in our example above, this would be replaced with a 6,
since we wanted to count from 1 to 6. The STEP part in the line tells DP
that we are going to tell it how much to add to the <counter> each time
we come back in the loop, and the <stepval> is the amount that will be
added to <counter> each time. In our example above, <stepval> would
be 1.

Let’s take a look at what our example from above would look like,
using this new FOR..NEXT loop:

VAR .counter.
FOR .counter. = 1 TO 6 STEP 1

Dice! Plus Script Tutorial

page 21

WINRESULT = 1d6
DISPLAY

NEXT
RESULT = .counter.

For starters, it’s quite a bit smaller, because most of the work of
setting values and incrementing our counter variable are taken care of by
the FOR..NEXT loop for us.

So, what is going on in this little script is this: The variable
‘.counter.’ is created. Dice! Plus sees the FOR line, and makes
‘.counter.’ equal to 1, since that is the <startval>. Then the script goes on
to the next two lines, which display the window for the result of the die
roll. Then the script goes on to the next line, which is the NEXT com-
mand, which causes DP to jump back up to the FOR line, and add the
<stepval> to the counter. Since the <stepval> is 1, ‘.counter.’ would then
hold a value of 2, and since 2 is less than or equal to the <endval> of 6,
the script continues to run the statement block. This goes on right
through a value for ‘.counter.’ of 6, because a FOR..NEXT loop includes
the <endval> value as the last value it will use, so that it will exit only
when the counter value exceeds the <endval> value. So, when the
counter value is 6, the script runs down to the NEXT line once again,
then jumps to the FOR line. At this point, DP adds 1 to the counter
again, and then checks to see if it is more than the <endval> of 6. Since
the counter is a 7, DP jumps down to the NEXT line, and continues on
with the script at the first line after that.

The important thing to remember is that the counter variable is first
set to the <startval>, then every time the loop comes up after that, the
<stepval> is added on before comparing it to the <endval>. You must
remember, also, that the <endval> is the last value that the loop should
be run for, not the value that makes the loop end immediately.

Now that you see how to make the FOR..NEXT loop work, it is also
easy to make the FOR..NEXT loop even a little bit simpler, since you do
not have to include the STEP <stepval> part of the FOR line if you do
not want to. If you leave it off, Dice! Plus will automatically use a
<stepval> of 1, unless the <startval> is higher than the <endval>, in
which case DP will use a <stepval> of -1. Yes, you can count backwards
in a FOR..NEXT loop. As a matter of fact, this is what our example
would look like if we wanted to roll six times, but counting backwards

Script Tutorial Dice! Plus

page 22

(and leaving off the <stepval>, which is optional for steps of 1 or -1):

VAR .counter.
FOR .counter. = 6 TO 1

WINRESULT = 1d6
DISPLAY

NEXT
RESULT = .counter.

That looks pretty straightforward, doesn’t it?
Of course, you can count by values other than 1, but in that case you

must use the STEP <stepval> part of the FOR line.
Let’s try something a little more complicated with the FOR..NEXT

loop now. What if we want to roll three times, rolling 2 dice the first
time, 4 dice the second time, and 6 dice the final time. Let’s just adapt
our handy example:

VAR .counter.
FOR .counter. = 2 TO 6 STEP 2

WINRESULT = .counter.d6
DISPLAY

NEXT
RESULT = .counter.

Notice that we are now starting the counter at 2, since we want the
first roll to be of 2 dice. We set the <stepval> to 2 so that we would add
2 to the counter each time, making it 2 the first time, 4 the second time, 6
the third time, and when it comes back around, the 8 would make the
script jump down to the line after the NEXT line.

(One other thing to keep in mind is that the value of your counter
variable is actually changed before it is compared to the <endval>, so it
will be whatever value it was to make it exit out of our looping (8 in the
last example). You can see this if you run this example script in Dice!
Plus, because after the script is finished, the Result box will hold the
final value of ‘.counter.’.)

Note also that we are using the counter variable as the number of
dice we want to roll. This is perfectly acceptable, since ‘.counter.’ is a
perfectly normal variable in every way. However, if you change the
value of the counter variable inside the loop, you will quite possibly
destroy the count that you are trying to maintain, so don’t change the

Dice! Plus Script Tutorial

page 23

value, although you can use the value. For example, this script will stay
in the loop forever, because it will never get beyond a value of 4.

VAR .counter.
FOR .counter. = 2 TO 6 STEP 2

WINRESULT = .counter.d6
DISPLAY
.counter. = 2;bad idea to change the counter

NEXT
RESULT = .counter.

In this example, the first run sets ‘.counter.’ to a value of 2, then runs
the statement block. Inside the statement block, ‘.counter.’ is set to a
value of 2. Then the NEXT makes the jump back to the FOR line, where
2 is added to the value of the counter, which is 2, making a value of 4,
which means the loop runs again, where the counter is set to 2, and the
NEXT jumps back to the FOR, where 2 is added to the value of the
counter, and so on, forever. Not a good thing, and not very useful, really.

Getting Input

While the script language as you’ve learned it is pretty powerful
already, there is another command that you can use to make your scripts
a little easier to interact with, and that command is GET. GET allows
you to get input from whoever is using your script, so that they don’t
have to mess with the script itself to do what they want. GET is very
easy to use, all you need is a variable. Here is a tiny script that gets input
from the user:

VAR .user.
GET .user., Enter a number Mr. User:
RESULT = .user.

The GET line will pop up a little window that gets a number from
the user. It uses the variable .user. to store the number that the user will
enter. The part of the GET line after the .user. variable, separated by the
comma, is the prompt that will be displayed in the GET window to let
the user know what they are entering the number for, or anything else
you want to say in the GET window; don’t get too wordy though, since

Script Tutorial Dice! Plus

page 24

space is somewhat limited. If you don’t want to use your own prompt for
the GET window, you don’t have to. Here is the same script, except that
the prompt that will tell the user to enter a number will be made up by
Dice! Plus instead of using one that you provided:

VAR .user.
GET .user.
RESULT = .user.

As you can see, using GET is very simple and straight-forward, and
provides an easy way to interact with the user of your script.

Ready To Rip

Believe it or not, you have now been exposed to all of the major
features of the Dice! Plus scripting language. While there are still a few
commands that you haven’t seen used, these are generally very simple
things that you will understand easily just from their description in the
Script and Function Reference.

Now, just to prove that I’m telling the truth, let’s take a look at one
of the sample scripts that comes with Dice! Plus: SHDWRUN.DIE,
which is a script for counting successes in the Shadowrun game. Here is
the script (edited slightly to capitalize all the commands, to conform
with the rest of this manual):

; Script for counting successes in Shadowrun. This
;script requires DICE! PLUS v1.2, which should be
;with this script, or available where you downloaded
;this script.
; v1.2 is required because earlier versions did not
;support use of >= together, or the SELECT CASE
;block statement.

;Define our variables for the script
VAR .dice.
VAR .target.
VAR .counter.
VAR .total.
VAR .success.
VAR .dieroll.

Dice! Plus Script Tutorial

page 25

; Here is the part of the script that we want to have
; running all the time. If you want to run this script only
; once per Roll, comment out the :loop and goto loop
; lines, but remember that you'll have to reenter the
; dice and target numbers every time if you do that.
:loop

; Clear the variables for each roll
CLEARLOG
.total. = 0
.success. = 0

; Get the number of dice to roll and the target number
GET .dice., Enter the number of dice to roll (0 to

exit):
IF .dice. = 0

RESULT = "terminated"
END

ENDIF
GET .target., Enter the target number:

; Roll each die, checking for success
FOR .counter. = 1 TO .dice.

.dieroll. = @WILD(d6)

.total. = .total. + .dieroll.
IF .dieroll. >= .target.

.success. = .success. + 1
ENDIF

NEXT

; Display the results
IF .total. = .dice.

WINRESULT = "Botch"
ENDIF
IF .total. > .dice.

SELECT CASE .success.
CASE IS < 1

WINRESULT = "No Successes"
EXIT SELECT

CASE 1
WINRESULT = ".success. Success"
EXIT SELECT

CASE IS > 1
WINRESULT = ".success. Successes"
EXIT SELECT

END SELECT
ENDIF

Script Tutorial Dice! Plus

page 26

DISPLAY
GOTO loop

Wow! That’s a long one. Let’s look at this script one piece at a time.
Remember, we can ignore all the comments after the semi-colons,
because DP will. They are mostly there to help you see what’s going on
when you are looking at the script in Dice! Plus.

First, though, if you aren’t familiar with Shadowrun, the system uses
d6, of which you roll a number equal to your skill level. The object is to
roll the dice and try to get a number of successes. You get a success
when the number on a d6 is higher than, or equal to, the target number
for the task. The target number is set by what you are trying to do, and
the higher the target number, the harder the task. Also, if you roll a 6 on
your d6, you get to roll again and add the result to your 6, doing this
again as long as you keep rolling 6 on the die. If all the dice that you are
rolling turn up 1’s, you have botched your roll.

So, what this script is trying to do is roll a bunch of d6’s, rerolling
and adding on those that come up sixes, and comparing each die to the
target number assigned by the GM. Also, take note if we got all ones so
that we’ll know that we botched.

Let’s get to it, and take a look at the first chunk of the script.

VAR .dice.
VAR .target.
VAR .counter.
VAR .total.
VAR .success.
VAR .dieroll.

This first chunk of script code is just setting up our variables, so
nothing special here. Here is the next chunk:

:loop
; Clear the variables for each roll
CLEARLOG
.total. = 0
.success. = 0

Here, we are just setting a line label, and clearing a couple of vari-
ables. The line label is being used by the GOTO at the bottom of the
script to make a big loop. The big loop allows us to keep running the

Dice! Plus Script Tutorial

page 27

script without having to always hit the Roll button. As long as the script
is running, Dice! Plus will keep track of our variable values for us
without resetting them to zero, and that is what we want, since we will
often be rolling the same number of dice over and over again.

Clearing those two particular variables is important, because they are
keeping track of things that should be reset every time the loop starts,
unlike the other variables which we want to keep their values unless they
are specifically changed. The .total. variable is keeping track of the total
of all die rolls made during this pass of the loop, and the .success.
variable is keeping track of the number of successes (rolls over the target
number) that we have made during this pass of the loop.

We also sneak a new command in here: CLEARLOG. All this
command does is empty out the Long Results box, so that it doesn’t over
flow while the script is running. CLEARLOG is important because with
the loop always running, DP doesn’t have any other way to know that the
Long Results box should be cleared out. Normally, it is cleared at the
start of each script, but this one is designed to keep running, so we have
to clear out the Long Results manually.

Here is the next chunk of the script:

; Get the number of dice to roll and the target number
GET .dice., Enter the number of dice to roll (0 to

exit):
IF .dice. = 0

RESULT = "terminated"
END

ENDIF
GET .target., Enter the target number:

This chunk starts out by asking the user to enter a number of dice to
roll, and stores that entry in the .dice. variable. The first time this script
starts up, .dice. won’t have a value yet, but for all the following rolls,
.dice. will remain set to what ever was entered by the user, so it will
default to that value in the GET window.

The script needs an easy way to exit, so we chose to do it by quitting
when the user enters 0 dice to roll. So, the IF statement checks to see if
the .dice. variable is set to zero, and if it is, the script ends. If not, it
continues on to the next GET statement, where we find out from the user
what the assigned target number is.

As with the .dice. variable, the .target. variable is not cleared be-

Script Tutorial Dice! Plus

page 28

tween loops, so after the first run through of the loop, the GET window
will have a default value equal to the current value of the .target. vari-
able.

And now on to the next piece:

; Roll each die, checking for success
FOR .counter. = 1 TO .dice.

.dieroll. = @WILD(d6)

.total. = .total. + .dieroll.
IF .dieroll. >= .target.

.success. = .success. + 1
ENDIF

NEXT

Just like the comment says, this chunk rolls each die, and checks to
see if it is a success. To roll each die, we use the FOR..NEXT loop,
because it will handle most of the dirty work for us.

Inside the FOR..NEXT loop, the first line assigns the results of a
wild d6 roll to the variable .dieroll. Just a second now, what is that odd
looking @WILD thing? That is one of the many functions available in
Dice! Plus. By using the @WILD function to roll our d6, we don’t have
to worry about checking to see if the roll is a 6, and then rolling again
and adding if it is, because that is what the @WILD function does!
Using this function here makes our life quite a bit easier.

Just to be a little more specific, since we are using it, what the
@WILD function does is this: it looks at the roll that it is being told to
make, which is a d6 in this case, and finds the highest result for that roll,
which in our case is a 6. Then, it makes the roll, and if the high result
comes up, it rolls again and adds the result to the previous roll, doing this
until the high result doesn’t come up. This is exactly what we need for a
Shadowrun die roller.

The line after the .dieroll. variable is assigned from the function just
adds the result of the dieroll to the current total of all rolls. We need the
total later to see if we have botched (rolled all ones).

The next line checks to see if our dieroll was a success, by using an
IF statement to compare the .dieroll. variable to the .target. variable,
which was entered at the earlier GET statement. If the .dieroll. is greater
than or equal to the .target., we have a success, so we increase the
number of successes we have by adding one to our current number of
successes. This is why we cleared the .success. variable earlier in the

Dice! Plus Script Tutorial

page 29

loop, otherwise we might have a number in .success. already from an
earlier roll, which would erroneously inflate the number of successes we
actually have.

Now on to the final chunk of the script, which is a little longer than
the others, but doesn’t really do any more:

; Display the results
IF .total. = .dice.

WINRESULT = "Botch"
ENDIF
IF .total. > .dice.

SELECT CASE .success.
CASE IS < 1

WINRESULT = "No Successes"
EXIT SELECT

CASE 1
WINRESULT = ".success. Success"
EXIT SELECT

CASE IS > 1
WINRESULT = ".success. Successes"
EXIT SELECT

END SELECT
ENDIF
DISPLAY

GOTO loop

What this chunk does is display the results of our Shadowrun roll to
the user. First, we check to see if we botched, by seeing if the total of all
rolls is equal to the number of rolls that we made. (If every die comes up
a one, the total is the same as the number of dice rolled). If it is, we send
a result of “Botch” to WINRESULT.

Then, we check to see if the total is higher than the number of dice.
If we botched, we’ll skip this whole IF..ENDIF chunk, and go right to
the DISPLAY command near the end, otherwise we’ll enter the
IF..ENDIF statement block to see how we did.

What we need to know now is how many successes we got, so we
use a SELECT CASE statement block to find out, and to set our
WINRESULT depending on the answer. You’ll notice that our quoted
text being sent to the WINRESULT window has the variable .success.
inside. This variable will be replaced with the value of .success. before
the WINRESULT window appears. So, if we had one success, the

Script Tutorial Dice! Plus

page 30

WINRESULT window would display “1 Success”. This is another good
reason to make sure that you use a naming standard for your variables
that is unlikely to conflict with normal text (which is why I use a period-
variable-period format), otherwise you may occasionally find your text
replaced by numbers in the oddest places.

You’ll notice that we use a new command here, in each of our CASE
blocks. The new command, EXIT SELECT, tells DP to jump immedi-
ately to the END SELECT line without looking at any of the other CASE
lines. This speeds up our script, because once it finds a True CASE, it
doesn’t have to waste time looking at the others.

Note that we don’t have a CASE ELSE statement block, this is
because our CASE statements cover the entire possible range of results.
If we had a CASE ELSE, we would put it at the end of the other CASE
statements, because any one of them that was True would set
WINRESULT and jump immediately to the END SELECT line, so we
wouldn’t need the CASE ELSE at the top. If we did put the CASE ELSE
at the top of the CASE blocks, however, we would not put an EXIT
SELECT command in it, because the CASE ELSE is meant to be used
only to cover for values that aren’t caught by other CASE statements, so
it should never automatically exit the SELECT CASE statement block.

Finally, after we have exited the SELECT CASE block and the
IF..ENDIF block, we get to the DISPLAY, which will pop up the
WINRESULT window with our results. We need the DISPLAY because
the script never ends on its own, so that’s the only way to see the results.

Then, we get to the GOTO statement, which sends us back up to do
our loop over again.

That Is All

While I haven’t covered every command that the script language
supports, I have covered all of the major ones, and those most likely to
give you trouble as you write your own scripts. The best way to learn
how to write scripts of your own is to sit down and write scripts. Start
with little ones that only do little things, and don’t use very many script
commands. This way, you will get a feel for how scripts are written, and
you will become more comfortable with the commands before you jump
into the larger scripts. Starting with small scripts will also help limit the

Dice! Plus Script Tutorial

page 31

frustration of having something go wrong, and needing to find what part
of your script is causing the problem.

When you want to do something and you don’t know what command
to use, look back through this manual to see if something looks similar,
or try refering to the Function and Script Reference (contained within the
text file REF.TXT) to get explanations of the commands and functions
that are available. I would encourage you to read through the Function
and Script Reference at least one time, just so that you are familiar with
the different functions and commands that are available. You may even
find that there is a function that already does exactly what you need.

Additionally, there are a variety of sample scripts included with
Dice! Plus to show you how I have done some things, as well as to
demonstrate the use of the functions that come built-in to the program.

Good Luck,

Armin D. Sykes

Script Tutorial Dice! Plus

page 32

Index

Symbols

; 18
< 8
<= 9
<> 9
= 8
> 8
>= 9

C

CASE 13, 16
CASE ELSE 14
CASE IS 14
CLEARLOG 27
comments 18

D

DISPLAY 7

E

END 10
END SELECT 13
ENDIF 9
EXIT SELECT 30

F

FOR 19, 20
FOR..NEXT 19

G

GET 23
Getting Input 23
GOTO 16

I

IF 8, 9
IF..ENDIF 8, 9
indentation 17
Input 23

L

Line labels 16
loop 17, 19
Looping 19

N

NEXT 19, 20

P

prompt 23

R

Readable Script Code 17
RESULT 6
result variable 6

S

SELECT CASE 12, 13
semi-colon 18
STEP 20

V

VAR 4
variables 4

W

WINRESULT 6

Dice! Plus Script Tutorial

page 33

Miscellaneous Information

Where To Reach Me

Snail Mail: Armin D. Sykes
Miser Software
4130 SW 117th #401
Beaverton, OR 97005

via Internet: armin@misersoft.com

	Contents
	Getting Started With Scripts
	The Simplest Useful Script
	Power Through Little Boxes?
	Garbage Chutes
	Garbage On Display
	If We Only Had A Brain
	Improving The Brain
	The Case For Real Power
	Jumping About, And Using Line Labels
	Readable Script Code (A Small Digression)
	Looping A Certain Number Of Times
	Getting Input
	Ready To Rip
	That Is All
	Index
	Miscellaneous Information
	Where To Reach Me

	Index
	Symbols
	;
	<
	<=
	<>
	=
	>
	>=

	C
	CASE
	CASE ELSE
	CASE IS
	CLEARLOG
	comments

	D
	DISPLAY

	E
	END
	END SELECT
	ENDIF
	EXIT SELECT

	F
	FOR
	FOR..NEXT

	G
	GET
	Getting Input
	GOTO

	I
	IF
	IF..ENDIF
	indentation
	Input

	L
	Line labels
	loop
	Looping

	N
	NEXT

	P
	prompt

	R
	Readable Script Code
	RESULT
	result variable

	S
	SELECT CASE
	semi-colon
	STEP

	V
	VAR
	variables

	W
	WINRESULT

